
International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 27

A PARSING MACHINE ARCHITECTURE
ENCAPSULATING DIFFERENT PARSING

APPROACHES

Nikolay Handzhiyski, Elena Somova*

University of Plovdiv “Paisii Hilendarski”, Plovdiv
Bulgaria

* Corresponding Author: eledel@uni-plovdiv.bg

Abstract:In the parsing theory, seemingly different parsing machines exist,
due to the use of different terms that have similar meanings. This article
addresses the diversity in the parsing terminology by proposing definitions
for various objects and processes in a parsing machine. Based on the
defined objects and processes, a common architecture of a parsing machine
is proposed that is applicable in practice when using different parsing
approaches. The modules of the parsing machine and their close relations
are shown. The proposed parsing machine architecture is to a large extent
used in the parsers generated by Tunnel Grammar Studio.

Key words: Lexing, Parsing, Token, Lexeme, Syntax Analysis.

1. INTRODUCTION

To be able to work on data the electronic systems have to perform a common
process: the data recognition. This process is performed by a parsing machine (PM)
– an abstract machine that includes all of the data recognition operations, and is
confusingly called a parser by many authors. During the execution of the PM, various
subprocesses (subtranslators [1]) perform operations on the data (usually in the form
of a string of characters) that have to be recognized. The lexical analysis [1] is
performed by the first subprocess, which we will call a lexer (sometimes called
lexical translator). It converts the input characters into tokens according to a formal
grammar (for short a grammar) that describes the structure of the tokens as formed
by characters. The syntax analysis (parsing [1, 2]) is performed by the second
subprocess, which we will call a parser. It checks whether the sequence of tokens
(received from the lexer) belong to the data language, which is described by another
given grammar – the parsing grammar. The output of this subprocess is a sequence
of Syntax Structure Construction Commands (SSCC). The third subprocess outputs
an explicitly built syntax structure from the SSCC or uses them directly to perform

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 28

the specific to the PM task. This architecture of а PM (that we will classify as
“traditional”) is often described in the literature, but with different terms for the same
concepts.

А grammar consists of formally defined rules (for short only rules, according to
Chomsky the “laws” of the language) that are described with a meta syntax such as
ABNF [3] and EBNF, defined by Wirth and [4]. The rules are also called productions
and their names are called nonterminals. Each rule accepts terminal symbols. To
perform the data recognition, the subprocesses of the PM often do that internally as
automata [5]. To avoid the confusion between terminal symbols and nonterminal
symbols, some authors call the former symbols tokens [6].

The main goal of this article is to propose a common architecture of a PM that
can encapsulate different parsing approaches as “sometimes it pays to revisit an old
concept from a fresh angle” [7].

Section 2 provides an overview of the various terms in the parsing theory and
their uses. Section 3 contains: a description of the problem that is the purpose of this
article; gives a solution to the problem by proposing a list of clear definitions for
existing terms, based not only on their initial definitions, but also on their established
functionality; on the basis of them and several new terms, a common architecture of
the PM is proposed, independent of the applied parsing algorithms, that enables
different parsing approaches to be described with it. Conclusions and a perspective
for further research in relation to this article are given in Section 5.

2. RELATED WORK

In some articles, a token is a synonym to a terminal [8] (same as a terminal
symbol). Sometimes, a token is composed of a type and a value [9]. According to
[10], a token has a type that symbolizes the class of words that can be described with
the token, as each word is composed of one or more characters. In other articles, the
elements defined in the parsing grammar are terminal symbols for the parser and
syntactically structured symbols for the scanner, where the tokens that are created
for a given production (rule) are in the same class, and each token in the class is an
instance of the class [11]. For some [12], the lexical analyser partitions a stream of
characters into groups called tokens. According to others [1], the lexer maps the input
characters to a string of lexical tokens that are the terminal symbols defined in the
parsing grammar. These lexical tokens (that are the elements at the logical level)
could also contain semantic information.

The tokens might not have just one type, but more than one, when more than
one rule accepts a sequence of characters [10]. However, this approach allows the
ambiguity that exists between the lexical rules in the lexer to spread into the parser.
Then it is necessary for the PM to use parsing algorithms that accept the whole class
of context-free grammars, such as GLR [13] or GLL [14]. A specificity of this
approach is in the ambiguity that exists, when the different input characters can be
grouped in different sequences of tokens. In some cases, when one possible sequence

International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 29

of tokens is shorter than another, then an additional token type (null) has to be used,
to make the number of tokens equal in length. However, this requires a change in the
parsing grammar [10].

For some authors, a token is a pair of a name and an attribute value [15], where
the name is an abstract symbol (representing a lexical unit) and is the input symbol
for the parser. A lexeme is a sequence of characters that form the token and are
accepted by a given pattern – practically a regular expression. Only the token’s name
is used by the parsing algorithm [15], as the attribute value is used after the parsing,
for the specific task (translation, generations, etc.) and can indicate the lexeme and/or
other important information (the text line number and the number of the character in
this line where the token begins, for short a locator). A scanner might be executed
before the lexical analysis and it does not group the characters into tokens, but
removes the unnecessary parts of the input data (such as comments and white
spaces). The lexical analysis subsequently performs the tokenization of the
characters into lexemes based on the input it receives from the scanner [15]. In the
implementation section, however, the lexer has the function “scan”, and the token
has a “tag”, instead of a name [15]. Other authors [16], define a token as a tuple
containing a terminal, a lexeme matching that terminal, and a locator. The last
element eliminates the need to store this information in a symbol table that is shared
between the lexer and the parser [15].

In [2], the term symbol is used as a synonym to a character and a letter, as well
as a sentence and a word are used as synonyms to a string. In this sense an alphabet
is the set of symbols/letters/characters and the sequences of them are a
string/word/sentence.

For some, “scanner(е)” is the algorithm that checks if a string of characters
belongs to the language defined by a regular expression “e” [17]. The regular
expressions have unique names, called tokens, and the scanner is interchangeably
called lexical analyser.

According to [2], the input of the lexical analyser is “a string of symbols from
an alphabet of characters”. “It is the job of the lexical analyser to group together
certain terminal characters into single syntactic entities, called tokens”. “A token is
a string of terminal symbols, with which we associate a lexical structure consisting
of а pair of the form (token type, data)”, where the type has a value from a finite
domain and the data is anything found to be relevant for the particular token. “The
first component of a token is used by the syntactic analyser for parsing” and the
second component is used by the later stages, after the parsing.

Some authors divide the lexer into two levels. The first level works in the
traditional way (with a finite state machine) and outputs universal lexemes, that are
lexical entities – the smallest part of the language [17]. These universal lexemes
consist of a token, lexeme and the number of the characters the lexeme. The tokens,
in this case, designate a class (all possible lexemes that can be recognized by a given
lexical rule) and have a name according to the rule used to recognize the
corresponding lexeme [17]. The second level performs on the result of the first level

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 30

and outputs tokenized lexemes that consist of the name of the rule used by the second
level of the lexical analysis, together with all of the used universal lexemes from the
first level and the total length of the lexemes as a number [17]. These tokenized
lexemes are then the input of the parser. Such a division of the lexer, requires an
additional processing and it takes some execution time: the first level of the
processing is realized as deterministic finite automata, which is a standard part of a
traditional lexer, but the latter is in the form of a non-conventional nondeterministic
finite automata (NFA), where it’s transitions are based on regular expressions with
conditions. The execution of the NFA is with backtracking, and according to the
authors, this does not “help the efficiency” [17].

From all said so far, it seems that the terminology changes through time, but still
oscillates around the same concepts. It is difficult to pinpoint the origin of each term,
and it is debatable to some extent what is the most correct meaning if each: the first
defined, or the one “mostly used” in the literature. Tracking back the token term,
leads to the final draft report of ALGOL 68 [18], where an extension is defined to be
a comment between two symbols (as a symbol is the basic block of the language,
made of one or more characters). Many symbols are classified as belonging to a
group of tokens. Then in the revisited report a token is defined to be a symbol that
can be preceded by pragments [19], that in turn are: a comment (that does not affect
the program in any way); or a pragmat (that may affect the program). Additionally,
the previous usage of a token to designate the class of symbols has been removed.

There is an interesting discussion on the topic that a token (as part of a sentence)
is for the computer scientist, as is the symbol (as part of a word) for the practitioner
of formal linguistics [20]. Additionally, the token has a general meaning for the
computer scientist, because the tokens can have a structure of other tokens, that are
part of a different language that itself is made of tokens (eventually letters).

It can be concluded that it is true for some of the concepts in the domain that
“the more one reads, the more unclear it gets”. There can be no formal definition of
a parsing machine, when many of its components are a matter of interpretation. This
is the purpose of this article, to clearly define a parsing machine and its related terms.

3. PROPOSED SOLUTION

This section defines the basic terms related to the parsing process. An attempt
is made to give a brief and unambiguous definitions of the existing terms, based not
only on their initial definitions, but also on their established functionality. On the
basis of them and several new terms, a common architecture of the PM is proposed,
independent of the applied parsing algorithms.

3.1. Description of the problem

The previous section highlights the problem that there is a wide variety of
definitions of many terms and understandings of each, related to the parsing, that are
sometimes used one instead of another. The only unambiguous claim is that there

International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 31

are tokens and lexemes and they are related. Therefore, one of the purposes of this
article is to propose clear definitions of aforementioned parsing terms. In addition,
the different terms and the different relations between them give a rise to seemingly
different PMs. The other goal of the article is to provide a common architecture that
can combine the different approaches.

3.2. Definitions

The following definitions represent the view of the authors of how the different
concepts should be called and what their functionality is:

1. Character – a Unicode codepoint [21]. The Unicode standard is old enough
and our reasonable expectation is that the PMs (especially those generated by a
parser generator) support it and are handling the invalidly encoded input bits
properly;

2. Lexeme – a sequence of characters [22];
3. Name – an integer number representing a category from a particular set of

categories;
4. Attribute – a tuple of: a name and a value, as their meaning is defined

separately per attribute. A set of attributes (possibly empty) is called later only
attributes;

5. Token – a tuple of: a type (defined later), a sequence of zero or more names,
a lexeme (possibly of zero length), and attributes. When the name is only one, it will
be referred to as the token’s name;

6. Module – an entity that performs operations on an input to produce an output.
It can be a coroutine [23], a subroutine or a thread of execution depending on the
available resources and particular needs;

7. Parsing Machine – a set of modules that produces an output (that depends on
the particular PM) from a given raw input (a stream of bits). This definition is similar
to [24];

8. Supplier – these are the first modules in a PM that only transmit binary data
to the next modules. There can be one or more of such modules. For example, a
module that reads bits from a stream of bits stored in the file system of a computer;

9. Scanner – a module that scans characters from the input received from the
last supply module. The term scans aligns to the usage of scanning from Turing, as
well as with the card scanner in [23]. For each scanned character, the scanner outputs
a token that has a character type (defined later) and eventually some additional
information found to be relevant for the particular PM in the form of attributes. There
must be exactly one scanner as this module is а “border” between the operations on
bits and the operations on tokens. By defining the module in this way however, there
can be no scannerless parsing, because the PM ultimately is defined to process the
input bits in some way;

10. Lexer – a module that inputs tokens from a previous module and outputs the
same (when none of its rules accepts the current input) or different tokens (according
to its own grammar rules) to the next module. There can be zero (that effectively

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 32

means lexerless PM) or more lexers, each ordered one after another, but all after the
scanner (similar to [17]);

11. Parser – a module that inputs tokens and outputs SSCC. This module: a) is
a “border” between the lexer(s) and the optimizers(s) (defined later); b) performs the
parsing per se - it verifies that the input tokens conform to the rules of its grammar;
c) does not calculate the locator; d) does not emit the found errors in the input
directly, but sends them in the SSCC stream; and e) it does not buffer any SSCC, but
sends them directly to the next module;

12. Optimizer – a module that inputs SSCC and operates on them before
outputting the same or different SSCC. There might be zero or more optimizers. For
example: a) if the PM algorithm uses backtracking, the optimizer might buffer the
SSCC and only output them, after some sufficient number of SSCC are collected; or
b) the module might change the SSCC to insert or delete syntax structure elements;

13. Builder – a module that inputs SSCC and its output (if any) is not explicitly
defined, because it depends on the particular PM. The possible builder types are:
explicit (that builds a syntax structure) and implicit (that uses the SSCC without
building anything from them). The explicit builder has a syntax structure architect
that itself builds the syntax structure and in the case where the structure is a syntax
tree, it can be of two types: an abstract architect (builds an abstract syntax tree) and
a concrete architect (builds a concrete syntax (parse) tree). The implicit builder has
no architect, but it accepts a visitor (from the visitor design pattern) that will receive
the SSCC for its specific task. This is the module that calculates the locator. The
disambiguation filters [25] are used on the result of the explicit builder output.

3.3. Parsing machine architecture

Fig. 1 shows the common architecture of a PM with the participating modules
according to the proposed definitions (with SSCC examples). No particular
communication model between the modules is mandatory. The different possible
models are (where one applies only when the more restrictive model does not):

• singly linked list – the data is only transmitted from the first supplier to the
builder in a unique path. In such a case, each module might operate without the
expectation of an interruption from any other module;

• doubly linked list – a module might send data only to its direct neighbours.
This model can effectively be used for the implementation of the lexical feedback in
[10] (called backdoor approach in [6]);

• graph – each module might produce data to any other module. There can be
more than one supplier as well as more than one builder.

The connections between the modules might transport different data types, and
it is not defined how the modules will agree for the data transmission (a module
pushing its output to the next, a module pooling its input from the previous, or a
mixture of these): a) bits – receivable by the suppliers; b) tokens – receivable by the

International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 33

the lexers and the parsers; c) SSCC – receivable by the optimizers and the builders;
d) flags/options – receivable by any module.

Fig. 1. Common architecture of a parsing machine

Other than the singly linked list communication models imply that some
modules will have more then one input and/or output connection that in turn does
imply that any sequence of PM items (bits/tokens/SSCC) can be transformed to any
other sequence. That will make the PM Turing complete, when each of the

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 34

transported elements are from their respective finite sets. However, this article
describes a PM that uses all of the token fields for a recognition. The unbounded
length of the lexemes makes the set of tokens of not a finite length (set whose
elements cannot be counted), that means that such a PM is at least Turing complete.
From now on, a singly list model is assumed for simplicity.

The following token types are relevant to the described PM:
• t-character – a token that is created for a single character by the respective

modules. The scanner is the first to create such a token. The lexers, after that, create
tokens of this type, only when no rule in the particular lexer can be found to accept
the current input. The token’s name and its lexeme are having values like the
character. This implies that the categories that the modules use to give names to the
tokens they generate, include the whole set of characters (Unicode);

• t-sequence – a token that has a list of names from the rules in the lexer that
accepted the particular input, and a lexeme that combines all of the accepted
characters. When the lexer prioritizes the rules, only the name of the highest priority
one will be used;

• t-eof – a token that is sent at the end of the input data. The token has no name
and its lexeme has a length of zero. This token is often called a sentinel [15] and in
practice there is a reserved value of zero [11, 26] (when the tokens are represented
as integers) or null/nil (when the tokens are objects [27]);

• t-limit – a token that is sent only once by a module, when it cannot handle its
input, because the number of potential characters that could be part of the eventually
recognized t-sequence token are more than the maximum number that the lexer is
willing to accept. This token type exists analogically to response code 431 (Request
Header Fields Too Large) from the HyperText Transfer Protocol [28]. A
hypothetical implementation might never send a t-limit token, when it is ready to
accept any lexeme length, although this is not recommended.

3.4. Application of the architecture

The proposed architecture is applied to a large extent in Tunnel Grammar Studio
(TGS) [29], in particular the single list communication model. The TGS generated
parsers optionally store information about the number of bits in the stream, which
are used by the scanner to recognize each individual character, in the form of an
attribute. This allows the user of the syntax structure to know exactly where each
syntax element is located in the stream. These generated parsers work with the tunnel
parsing (TP) algorithm [30], where all of the defined token types in this article are
in use. The handling of the infinite by definition lexemes is done by classifying each
of them according to the expected lexemes, which are a finite number and each one
with a finite length, because the grammars that TP uses are finite and context-free.
The syntax of the grammars that TGS accepts is based on the ABNF meta syntax,
with an extension that enables the matching of a lexeme, regardless of the characters
in it (with other words, to ignore the lexeme altogether and use only the name of the

International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 35

t-sequence token), as well as to match a lexeme case sensitively or insensitively. The
defined character ranges in the ABNF standard are matched to the t-character tokens.
The case sensitivity in [31] also applies to the t-character tokens not to the t-sequence
tokens (that are handled by the extension).

The TGS generated parsers perform linear multithreaded parsing, by executing
the different PM modules in dedicated threads of execution. The PM generation
settings allow the thread that requests the parsing to be used for parsing (in this case
the PM is a subroutine), or the PM to have from one to three dedicated threads for
the execution of different module groups as follows:

• One supplier (that reads the bits from the input stream), a scanner (that
decodes the bits into Unicode characters and then forms the t-character tokens) and
a lexer (which exists if there is a non-empty lexical grammar to group the tokens
received from the scanner into tokens for the parser) are optionally in their own
thread. The purpose of the separate thread is to enable the PM to read the bits from
the input stream and to convert them to tokens without this to stall the other PM
modules (this occurs in a traditional PM that has its modules as subroutines, not
threads);

• A parser module that executes the TP algorithm, together with an optimizer
(if such is generated) are optionally in their own thread. The optimizer collects a
certain number of SSCC before sending them to the builder. The benefit of the
dedicated thread is when the parsing algorithm takes a significant amount of time to
process the tokens. This can be expected when the algorithm moves backwards for
nondeterministic grammars;

• A builder module might also be in a separate thread. That is useful when the
construction of the syntax tree or the use of SSCC directly by a visitor takes a
considerable time. If the visitor directly generates data during runtime (for example,
a compiler), then the generation could be done directly on the basis of the received
SSCC without the building of an explicit syntax tree. A beneficial side effect, when
a syntax tree is not generated, is that there is no memory to be released after the PM
completes. This saves not only memory space, but improves the execution time.
Then in this thread, in addition to the receiving of the SSCC, the compiler's output
will be stored in streams. This should not force the other PM modules to wait. It is
better, in this case, for the other modules to execute in parallel.

The advantages of the proposed new PM architecture and the related concepts
are:

• The PM architecture is with a clear separation of responsibilities between the
modules and it is based on the Unicode standard;

• The PM might run linearly with different threads for the different modules
(compared to the traditionally used subroutines);

• Many different PMs can be expressed with this common PM architecture, that
is at least Turing complete, because of the infinite tokens (and for this reason is more
capable than the traditional PMs);

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 36

• When the characters are transferred from the lexer through the parser (inside
tokens) to the builder (inside SSCC) the different modules do not need to use any
shared structures. That enables the modules to be developed in different
programming languages (or even run on different hardware).

4. CONCLUSION

The main contributions to the study are the following:
• New unified concepts such as: PM, supplier, optimizer, SSCC, architect, the

three PM communication models (singly linked list, doubly linked list, graph), t-
character token, t-sequence token, t-limit token, implicit builder, explicit builder;

• Different interpretation of concepts such as: character, token, parser, scanner,
lexer, builder;

• A PM that accepts input of bits (not characters nor symbols) and includes all
processes up to the generation of the syntax structure;

• A clear separation of responsibilities between a scanner and a lexer, as their
definitions are often blurred.

Additionally, in the study, the following are proposed:
• A new PM module, called supplier, to perform operations on the input, before

the forming of the characters (file reading, internet transfer, etc.);
• The alphabet of the parser’s grammar to be infinite in nature, by defining that

the token’s lexeme is also used by the parser for parsing, not only the token’s name;
• A new PM module, called optimizer, to perform operations on SSCCs, where

they represent the statically typed concrete syntax structure build information;
• The builder and the parser modules to be fully separated from each other – not

to share common structures;
• The builder module to be responsible for the locator.
The proposed parsing machine architecture is inspired by PM generated by

Tunnel Grammar Studio (TGS) [29] – a parser generator from ABNF grammars to
program source code. The future goal of the authors is to present how the infinite
lexemes in the tokens are used for parsing in the TGS generated parsing machines.
It is also possible for the lexer to support ambiguity [32], as long as the parser
supports ambiguous token streams.

An open question remains, what is the variety of the terminology in the literature
related to the parsing process in languages other than English, when not in every
language the terms have an unambiguous translation, and are used by different
authors.

The cited definitions by the different authors are not intended to be exhaustive
and none of the articles is deemed incorrect in its own context. Only those that are
found to be directly related to this article are included.

International Journal on Information Technologies & Security, № 3 (vol. 13), 2021 37

REFERENCES
[1] Deremer, F. L. Practical translators for LR(K) languages. Massachusetts Institute of
Technology, 1969.
[2] Aho, A., J. Ullman. The Theory of Parsing, Translation, and Compiling. ISBN-10:
0139145567, Prentice-Hall, Inc., 1972.
[3] Crocker, D., P. Overell. Augmented BNF for Syntax Specifications: ABNF. 2008,
Available at: https://tools.ietf.org/html/rfc5234 (visited on: 25.06.2021).
[4] ISO/IEC 14977:1996(E) Information technology – Syntactic metalanguage – Extended
BNF, Available at: http://standards.iso.org/ittf/PubliclyAvailable Standards/ (visited on:
25.06.2021).
[5] Kleene, S. C. Representation of Events in Nerve Nets and Finite Automata. Automata
Studies (AM-34), Vol. 34, Princeton University Press, 2016, pp. 3-42,
https://doi.org/10.1515/9781400882618-002.
[6] Johnson, S., M. Hill. Yacc: Yet Another Compiler-Compiler. Unix Programmer's
Manual, Vol. 2, 1977, pp. 353-387.
[7] Posse, E., H. Vangheluwe. Parsing revisited: a transformation-based approach to parser
generation. Proc. of the 2007 Python Conference, 2007, pp. 1-9.
[8] Parr, T., K. Fisher. LL(*): The Foundation of the ANTLR Parser Generator. ACM
SIGPLAN Notices, Vol. 46, No. 6, 2011, pp. 425-436, https://doi.org/10.1145/
1993316.1993548.
[9] Diekmann, L., L. Tratt. Don't Panic! Better, Fewer, Syntax Errors for LR Parsers. 34th
European Conference on Object-Oriented Programming, 2020, pp. 6:1–6:32,
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6.
[10] Aycock, J., R. Horspool. Schrödinger's Token. Software: Practice and Experience, Vol.
31, 2001, pp. 803-814, https://doi.org/10.1002/spe.390.
[11] Moessenboeck, H. Coco/R - A Generator for Fast Compiler Front Ends, Johannes
Kepler Universitat Linz, 1990, https://doi.org/10.3929/ETHZ-A-000534270.
[12] Yang, W., et al. On the applicability of the longest-match rule in lexical analysis.
Computer Languages, Systems & Structures, Vol. 28, No. 3, 2002, pp. 273-288,
https://doi.org/10.1016/S0096-0551(02)00014-0.
[13] Tomita, M. Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. The Springer International Series in Engineering and Computer Science, ISBN:
978-0-89838-202-0, Vol. 8, Springer, 1985, https://doi.org/10.1007/ 978-1-4757-1885-0.
[14] Johnstone, A., E. Scott. Modelling GLL Parser Implementations. Software Language
Engineering, Lecture Notes in Computer Science, Vol. 6563, Springer, 2011, pp. 42-61.
https://doi.org/10.1007/978-3-642-19440-5_4.
[15] Aho, A., et al. Compilers: Principles. Techniques, and Tools, ISBN-10: 0321486811,
Addison-Wesley, 2006.
[16] Van Wyk, E. R., A. C. Schwerdfeger. Context-Aware Scanning for Parsing Extensible
Languages. Proc. of the 6th Int. Conf. on Generative programming and component
engineering, 2007, pp. 63-72, https://doi.org/10.1145/1289971.1289983.

http://standards.iso.org/ittf/PubliclyAvailableStandards/
https://dl.acm.org/toc/sigplan/2011/46/6
https://dl.acm.org/toc/sigplan/2011/46/6
https://dl.acm.org/toc/sigplan/2011/46/6
https://dl.acm.org/toc/sigplan/2011/46/6
https://dl.acm.org/toc/sigplan/2011/46/6
https://doi.org/10.3929/ETHZ-A-000534270
https://www.sciencedirect.com/science/journal/14778424
https://www.sciencedirect.com/science/journal/14778424/28/3
https://doi.org/10.1016/S0096-0551(02)00014-0

International Journal on Information Technologies & Security, № 3, (vol. 13), 2021 38

[17] Rus, T., T. Halverson. A Language Independent Scanner Generator. CiteSeer, 1999, pp.
1-35.
[18] Mailloux, B. J., J. Peck, C. Koster. Final draft report on the algorithmic language Algol
68. 1968, https://doi.org/10.5555/1064072.1064073.
[19] Wijngaarden, A., et al. Revised Report on the Algorithmic Language Algol 68. ACM
SIGPLAN Notices, Vol. 12, No. 5, 1977, pp. 1-70, https://doi.org/10.1145/ 954652.1781176.
[20] Grune, D., C. Jacobs. Parsing Techniques: A Practical Guide. ISBN: 978-0-387-20248-
8, Springer-Verlag New York, 2008, https://doi.org/10.1007/978-0-387-68954-8.
[21] Unicode Standard, Available at: https://www.unicode.org/ (visited on: 25.06.2021).
[22] Bonami, O., et al. The lexeme in descriptive and theoretical morphology. ISBN-13 (15):
978-3-96110-111-5, 2018, https://doi.org/10.5281/zenodo.1402520.
[23] Conway, M. Design of a Separable Transition-Diagram Compiler. Communications of
the ACM, Vol. 6, No. 7, 1963, pp. 396-408, https://doi.org/ 10.1145/366663.366704.
[24] Woods, W. Cascaded ATN Grammars. American Journal of Computational Linguistics,
Vol. 6, No. 1, 1980, pp. 1-12.
[25] Macedo, J. N., J. Saraiva. Expressing disambiguation filters as combinators. Proc. of the
35th Annual ACM Symposium on Applied Computing, 2020 pp. 1348-1351,
https://doi.org/10.1145/3341105.3374123.
[26] Lesk, M., E. Schmidt. Lex – a lexical analyzer generator. 1990, Available at:
https://www.cs.utexas.edu/users/novak/lexpaper.htm (visited on: 25.06.2021).
[27] Kuhl, B., A.-T. Schreiner. Objects for Lexical Analysis. ACM SIGPLAN Notices, Vol.
37, No. 2, 2002, pp. 45-52, https://doi.org/10.1145/568600.568610.
[28] Nottingham, M., R. Fielding. Additional HTTP Status Codes. ISSN: 2070-1721, 2012,
Available at: https://tools.ietf.org/html/rfc6585 (visited on: 25.06.2021).
[29] Tunnel Grammar Studio, Available at: https://www.experasoft.com/products/tgs/
(visited on: 25.06.2021).
[30] Handzhiyski, N., E. Somova. Tunnel Parsing with countable repetitions. journal
Computer Science, ISSN 2300-7036, Vol. 21, No. 4, 2020, pp. 441-462,
https://doi.org/10.7494/csci.2020.21.4.3753.
[31] Kyzivat, P. Case-Sensitive String Support in ABNF. RFC 7405, ISSN: 2070-1721, 2014,
https://doi.org/10.17487/RFC7405.
[32] Quesada, L., F. Galiano, F. J. Cortijo. A Lexical Analysis Tool with Ambiguity Support.
ArXiv, Vol. abs/1202.6583, 2012, pp. 1-5.

Information about the authors:

Nikolay Handzhiyski – Co-Founder and CEO of ExperaSoft UG (haftungsbeschränkt),
Goldgasse 10, 77652 Offenburg, Germany, e-mail: nikolay.handzhiyski@experasoft.com;
PhD student at the University of Plovdiv; Sole developer of Tunnel Grammar Studio
Elena Somova – Professor in Computer Science, Head of Computer Science Department at
the University of Plovdiv “Paisii Hilendarski”; research areas: green technologies,
sustainability, gamification of learning, е-learning, game-based learning

Manuscript received on 28 June 2021

https://doi.org/10.5555/1064072.1064073
https://dl.acm.org/toc/sigplan/1977/12/5
https://dl.acm.org/toc/sigplan/1977/12/5
https://dl.acm.org/toc/sigplan/1977/12/5
https://dl.acm.org/toc/sigplan/1977/12/5
https://www.unicode.org/
https://dl.acm.org/toc/cacm/1963/6/7
https://dl.acm.org/toc/cacm/1963/6/7
https://dl.acm.org/doi/proceedings/10.1145/3341105
https://dl.acm.org/doi/proceedings/10.1145/3341105
https://dl.acm.org/toc/sigplan/2002/37/2
https://dl.acm.org/toc/sigplan/2002/37/2

	REFERENCES
	Information about the authors:

