
International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 27

ALGORITHMIZATION AND REALIZATION OF THE
SOFTWARE TOOL FOR THE SOFTWARE CODE

QUALITY ASSESSMENT

Irakli Basheleishvili*, Sergo Tsiramua, Avtandil Bardavelidze

1,3 Akaki Tsereteli State University, Kutaisi
2 University of Georgia, Tbilisi

Georgia

* Corresponding Author: e-mail: basheleishvili.irakli@gmail.com

Abstract: The paper deals with the development of software for the
program code quality assessment, which is based on the software code
quality assessment metrics and multi-criteria solution analysis method. The
software presented in the paper allows us to assess the quality of software
code written in C, C ++, C # and Java programming languages, as well as,
if necessary (when we have several software solutions for one task and want
to choose the best among them), to rank the program source files based on
quality quantitative indicators.

Key words: program code, quality, assessment, metrics.

1. INTRODUCTION

The rapid development that has taken place in information technology increases
demand for its use in virtually all spheres of human activity. What is more, it is
impossible today to conceive of them as being functioning effectively without using
modern information technology. The rapid development of information technology
and computing processes in recent decades has led to the existence of software in all
areas of human activity. This leads to the increasingly high requirements for software
quality. Software quality is a combination of the characteristics of the computer
software product and their meanings that relate to the possibility to use it to meet
established or expected requirements [2]. Quality in software means that there are
no errors therein [1, 3]. Software errors can cause heavy material damage, so
research in software quality management is very important today.

Software quality indicators can generally be divided into two parts: internal and
external quality indicators. Software code quality is an internal quality indicator that
is considered to be one of the most important parts of software quality management
[3].

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 28

Based on the above, the aim of our paper is to develop software for program
source-code quality assessment software using the metrics and multi-criteria solution
analysis methods. This will allow us to quantify the quality of the source code written
in C, C++, C# and Java programming languages, as well as to rank the source code
files of the program when we have several software solutions for one task (Source
Codes) and select the best quality ones among them. Such an approach to solving
the set task is a research novelty, the assessment of quantitative quality of the
software code is integrated in the current programs’ integrated development
environments, but they compute the values only by using some metrics of the
software code and do not help us in decision making. In particular, when we have
several software implementations of one particular problem and we want to choose
the best one based on their quantitative assessment.

The software that we propose offers a set of tools that can be used to assess the
quality of the source code files of the program and rank it, if necessary, which will
help us make decision on the best choice. Which is a novelty of the study.

2. MAIN PART

2.1. Research methodology

The research methodology presented in the paper involves developing the
algorithms and a software tool on their basis that analyzes software code with a view
to determining its quality assessment metrics (number of codelines, cyclomatic
complexity, Halstead complexity measures, and maintainability index). The
methodology also involves developing the source code file ranking algorithm based
on the multi-criteria solution analysis method -Topsis [7, 8]. The program source
code file ranking task can be represented as a multi-criteria solution task, in which
alternatives are the program source code files to be ranked, while the assessment
criteria are as follows: Lines of Code, Cyclomatic complexity, Program vocabulary,
Program length, Calculated estimated program length, Volume of Code, Software
Difficulty, Software Effort, Time to Write Code and Estimated Number of
Delivered Bugs[8, 9].

2.2. Code metrics and their definition algorithms

Metrics are the tools that are aimed to simplify the software quality assessment
decision-making process, increase productivity and responsibility levels, based on
the methods of collection, processing, and reflection of data related to issues of
problem statement and solving. There are some common metrics listed below [3, 6]:
 The number of the code lines - is used to determine the amount of original

text in a program based on its number of lines. This indicator is used to predict
program development costs in a specific programming language or to assess labor
productivity after program development.

International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 29

To count the number of code lines, we use a very simple algorithm, which in
fact is counting of all lines, in addition to empty lines and the commentary lines in
the source code file.
 Cyclomatic complexity - is a software metric used to measure the complexity

of a program or its topological measurer. The initial code of the program measures
the number of linear, independent paths from beginning to end. For example, if the
program does not contain a cycle or conditional branch, then the cyclomatic
complexity is equal to 1. If the program contains one if/else block then the
complexity is equal to 2 and so on.

Cyclomatic complexity can also be calculated within the program for the
individual functions, modules, methods, or classes. Cyclomatic complexity of a
program is determined by means of an oriented graph whose picks are the program
blocks, with joined ribs, if the control can be moved from one block to another. . In
this case, the complexity is determined by the formula:

Cyclomatic complexity = E - N + 2*P (1)
where: E = the number of edges in the control flow graph; N = the number of nodes
in the control flow graph; P = the number of connected components.

The algorithm for determining cyclomatic complexity of a source file includes
the following steps:
 Step 1. Analyze the source code file to identify cyclic and branch operators.
 Step 2. Build an oriented graph for the source code file.
 Step 3. Find the number of ribs and peaks in the graph.
 Step 4. Determine the number of connection components.
 Step 5. Compute cyclomatic complexity.

 Halstead complexity measures - this is a preliminary assessment of
the complexity of software implementation at the design stage. It is one of the static
and analytical methods of measuring software complexity, introduced by M.
Halstead in 1977 [3]. His concept was to create an empirical science of software
development. He found that software metrics should reflect implementation or
representation of algorithms in different languages, but should be independent of
their performance on a particular platform. These metrics, therefore, are computed
statically from the code. The aim of Halstead was to determine the measurable
properties of software and the relationships between them. Halstead metrics are
based on the assumption that parts of an executable program consist of operators and
operands. For example, variables and constants are treated as operands; keywords,
logical and comparative operators, etc. as operators. We need to find the following
basic dimensions for each program: η1 = the number of distinct operators, η2 =
the number of distinct operands; N1 = the total number of operators; N2 = the total
number of operands. From these numbers, several measures can be computed:

Program vocabulary: η = η1 + η2 (2)
Program length: N = N1 + N2 (3)

Calculated estimated program length: L = η1 * log2(η1) + η2* log2 (η2) (4)

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 30

Volume of Code: V=N * log2(η) (5)
Software Difficulty: D = (η1/2) * (N2 / η2) (6)

Software Effort: E = D*V (7)
Time to Write Code: T = (E/18) (8)

Estimated Number of Delivered Bugs: B = V/3000 (9)
The algorithm for determining Halstead complexity of the program’s source

code file includes the following steps:
Step 1. Analyze the source code file to determine the set of distinct operators;
Step 2. Analyze the source code file to determine the set of distinct operands;
Step 3. Determine the frequency for a single element of the set of distinct operators,
or how many times it is found in the program code;
Step 4. Determine the frequency for a single element of the set of distinct operands,
or how many times it is found in the program code;
Step 5. Compute the value of Holsted complexity.

 Maintainability Index - is a complex indicator of code quality. It is
defined by the formula [4]:

MI = MAX (0, (171 - 5.2*ln (V) - 0.23*CC - 16.2*ln (LC))*100/171) (10)
where: V – Halstead Volume, computational complexity. The value of metric
increases in direct proportion to the number of operators used; CC – Cyclomatic
Complexity. Structural complexity of the code or the number of different branches
in the code. The higher the value, the more tests to be planned; LC – Number of code
lines.

2.3. Example of program code evaluation

Evaluate the software code (which implements the Rabin-Karp algorithm)
below according to quantitative metrics. The software code is written in the C++
programming language.

1. void search(string pattern, string text){
2. int q = 100;
3. const int d = 28;
4. int pl = pattern.length();
5. int tl = text.length();
6. int i, j, hash_v_p = 0, hash_v_t = 0, h = 1;
7. for (i = 0; i < pl - 1; i++){
8. h = (h * d) % q;
9. }
10. for (i = 0; i < pl; i++){
11. hash_v_p = (d * hash_v_p + pattern[i]) % q;
12. hash_v_t = (d * hash_v_t + text[i]) % q;
13. }
14. for (i = 0; i <= tl - pl; i++){
15. if (hash_v_p == hash_v_t){
16. for (j = 0; j < pl; j++){

International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 31

17. if (text[i + j] != pattern[j]){
18. break;
19. }
20. }
21. if (j == pl)
22. cout << "Find index: " << i << endl;
23. }
24. if (i < tl - pl){
25. hash_v_t = (d*(hash_v_t - text[i] * h) + text[i + pl]) % q;
26. if (hash_v_t < 0)
27. hash_v_t = hash_v_t + q;
28. }
29. }
30. }

To measure the complexity of cyclomatic, build an oriented graph for a given

program code. The oriented graph is represented in Fig.1 below:

Fig. 1. Control flow graph

According to the given oriented graph Cyclomatic complexity=13.
Identify the operators, operands, and their frequencies in the given software code to
determine the Halstead complexity measures (Table 1).

Program vocabulary - 26+16=42
Program length - 98+84=182
Calculated estimated program length - 26*log2(26) +16*log2(16)=186.2114
Volume of Code - 182*log2(42)=981.4018
Software Difficulty - (26/2)*(84/16)=68.25
Software Effort - 8.25*981.4018= 66980.67
Time to Write Code - 66980.67/18=3721.148
Estimated Number of Delivered Bugs - 981.4018/3000=0.327

1

2

3

4

5 6

7

8

9

10 11

12

13

14

15 16

17

18

19

20 21

22

23

24

25 26

27

28

29

30

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 32

Table 1 Operators and operands
Operators Frequency Operators Frequency Operands Frequency

Void 1 [] 6 search 1
String 2 { } 8 pattern 4

, 5 <= 1 text 6
() 14 == 2 q 6
Int 5 If 5 100 1
= 2 != 1 pl 8

const 1 break 1 tl 3
; 12 Cout 1 i 16

length 2 << 2 j 7
. 2 Endl 1 hash_v_p 4
< 5 - - hash_v_t 9
- 4 - - h 4

++ 4 - - 0 7
For 4 - - 28 1
* 5 - - 1 2
% 3 - - d 5
 η1=26 N1=98 η2=16 N2=84

Once we have defined the number of the code lines, cyclomatic complexity and

Halstead complexity measures, we can calculate the maintainability index:
MI = MAX (0, (171 - 5.2 * 6.889 - 0.23 * 13 - 16.2 * 3.401)) * 100 / 171) =45.

The values of the evaluation measures for a given program code are given in the
Table 2.

 Table 2. Evaluation results
Measure Value
1 number of the code lines 30
2 Cyclomatic complexity 13
3 Program vocabulary 42
4 Program length 182
5 Calculated estimated program length 186.2114
6 Volume of Code 981.4018
7 Software Difficulty 68.25
8 Software Effort 66980.67
9 Time to Write Code 3721.148
10 Estimated Number of Delivered Bugs 0.327
11 maintainability index 45

3. SOFTWARE

The software presented in the paper was developed as a desktop application on
the .NET platform, with a simple and flexible user interface. The software
implemented using object-oriented programming paradigm. The program has a

International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 33

database-based structure. The software database developed on a MYSQL database
server. The main functionality of the program includes the following: Manage
source code files(add, edit and delete); Source code file analysis to determine the
number of lines of code, cyclomatic complexity, Halstead complexity measures and
maintainability Index; ranking the source code files for the best selection.

The program flowchart is shown in Fig. 2 below:

Fig. 2. Program flowchart

The program allows us to input and store the source code files for which we
want to assess the quality of the code (Fig. 3).

No

Yes

Add Source
Code Files

Calculate
Cyclomatic
complexity

Code
analysis

Calculate
number of

the code lines

Calculate
Halstead

complexity

Maintainability
Index

Select Source
Code File(s)

Ranking?
Compile a
decision
matrix

Determining
weights of
criteries

Ranking
(TOPSIS
Method)

Start

Save or
Export
Result

End

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 34

Fig. 3. Add Source Code

The image below shows (Fig. 4) the program window, which contains the source
code files included in the program. To assess the quality of code for a specific code
file, you need to select the appropriate file and click the "Measurements" button on
the toolbar.

Fig. 4. Main Form

Clicking the "Measurements" button brings up a new window with quantitative
indicators for assessing the quality of the selected file code (Fig. 5).

International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 35

Fig. 5. Metric Measurements

In case we have several programs for solving one task and we want to select the
best program code according to the quality indicators, first it is necessary to upload
these files to the program, then mark and click the "Ranking" button on the toolbar
(Fig. 6). In our case such files are: the Source Code 1, Source Code 2 and Source
Code 3, which are written in the programming language C ++, and they implement
different versions of binary search in the array.

Fig. 6. Ranking

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 36

 Clicking the “Decision” button brings up a window representing the
resolution matrix (Fig. 7). For the assessment criteria by the implication principle,
there have been defined the equal weights, which can be changed, if necessary, given
that their sum must be equal to one. In the window that appears, we need to define
the type of separate assessment criterion: Benefit or Cost.

Fig. 7. Decision Matrix

By clicking the "Ranking" button on the toolbar(Fig. 8), we can rank the
alternatives using the TOPSIS method and get a ranked list of alternatives.

Fig. 8. Ranking result

International Journal on Information Technologies & Security, № 2 (vol. 14), 2022 37

4. CONCLUSION

As result of the research presented in the paper, the program quality evaluation
software has been developed, which is a tool that can be used to assess the quality of
the software code written in C, C ++, C # and Java programming languages, as well
as rank the program source code files based on quality indicators. This tool will help
us to analyze the quality of the program code and improve it. The presented program
works at the level of the program source code file, it is planned that the program will
be updated and it will work at the program project level.

REFERENCES

[1] G. Daniel. Software quality: concepts and practice. ISBN: 978-1-119-13449-
7, John Wiley & Sons, 2018(720 p).

[2] S. Dalla Palma, D. Nucci, D. Palomba, F. & Tamburri, D. A. Toward a catalog
of software quality metrics for infrastructure code. Journal of Systems and Software,
ISSN: 110726, Vol.70, 2018, pp. 8, https://doi.org/10.1016/j.jss.2020.110726

[3] K. Gill, C. Kemerer. Cyclomatic complexity density and software maintenance
productivity. IEEE transactions on software engineering. Vol.17, No.12, 1991,pp.
1284-1288.

[4] G. Chogovadze, G. Surguladze, M. Gulitashvili and S. Dolidze, Software
application quality management: testing and optimization. ISBN 978-9941-8-0629-
2, Georgian Technical University, Georgia 2020 (pp. 366).

[5]Kan, Stephen H. Metrics and models in software quality engineering. ISBN: 0-
201-72915-6, Addison-Wesley Professional, 2003 (250 p.).

[6] Yu, Sheng, and Shijie Zhou. A survey on metric of software complexity. In 2010
2nd IEEE International conference on information management and engineering.
2010, pp. 352-356.

[7] I. Basheleishvili. Developing the expert decision-making algorithm using the
methods of multi-criteria analysis. Cybernetics and Information Technologies,
Vol.20, 2020, pp. 22-29, DOI: 10.2478/cait-2020-0013

[8] I. Basheleishvili, A. Bardavelidze. Designing the Decision-Making Support
System for the Assessment and Selection of the University’s Academic Staff.
International Journal on Information Technologies & Security, Vol.11, No.2, 2019,
pp. 51-58.

[9] G. Fraser, J.Rojas. Software testing. In Handbook of Software Engineering.
Springer Nature Switzerland, 2019 (p. 123–192), DOI: 10.1007/978-3-030-00262-6_4

[10] Savchenko, Dmitrii, Timo Hynninen, Ossi Taipale, Kari Smolander, and Jussi
Kasurinen. Early warning system for software quality issues using maintenance

https://doi.org/10.1016/j.jss.2020.110726

International Journal on Information Technologies & Security, № 2, (vol. 14), 2022 38

metrics. International Journal on Information Technologies & Security. Vol. 12,
No.4, 2020, pp. 35-46

[11] Ateşoğulları, Dilara, and Alok Mishra. Automation testing tools: a comparative
view. International Journal on Information Technologies & Security. Vol. 12, No.4,
2020, pp.63-76.

Information about the authors:
Irakli Basheleishvili – Doctor of informatics. Assistant Professor at the Akaki Tsereteli
State University of Department of Computer Technology. Area of scientific research:
Computer Sciences.

Sergo Tsiramua – Doctor of Technical Sciences, Professor at the University of Georgia of
Informatics Department of School of Science and Technology. Area of scientific research:
Computer Sciences.

Avtandil Bardavelidze – Doctor of Technical Sciences. Professor at the Akaki Tsereteli
State University of Department of Computer Technology. Area of scientific research:
Computer Sciences.

Manuscript received on 12 April 2022

	REFERENCES
	Information about the authors:

